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ABSTRACT

Severe thunderstorms and their associated tornadoes pose significant threats to life and property, and

using radar data to accurately measure the rotational velocity of circulations in thunderstorms is essential

for appropriate, timely warnings. One key factor in accurately measuring circulation velocity is the azi-

muthal spacing between radar data points, which is referred to as the azimuthal sampling interval. Previous

studies have shown that reducing the azimuthal sampling interval can aid in measuring circulation velocity;

however, this comes at the price of increased computational complexity. Thus, choosing the best com-

promise requires knowledge of the relationship between the radar azimuthal sampling interval and the

accuracy of the circulation strength as measured from the radar data. In this work, we use simulations to

quantify the impact of azimuthal sampling on the strength of radar-observed circulations and show that the

improvements get progressively smaller as the azimuthal sampling interval decreases. Thus, improved

characterization of circulations can be achieved without using the finest possible sampling grid. We use real

data to validate the results of the simulations, which can be used to inform the selection of an appropriate

azimuthal sampling interval that balances the accuracy of the radar-observed circulations and computa-

tional complexity.

1. Introduction

Tornadoes are high-impact weather events that

threaten lives and property (NOAA 2018). Since the

deployment of the Weather Surveillance Radar-1988

Doppler (WSR-88D), NationalWeather Service (NWS)

forecasters have relied on radar-observed signatures

that indicate the development and presence of tor-

nadoes to issue warnings to the public (Brotzge and

Donner 2013). Two radar signatures that indicate the

presence of a tornado are the tornado signature (TS) and

the tornadic vortex signature (TVS). Both signatures are

typically recognized in Doppler velocity fields by the

presence of extreme inbound and outbound velocities

that are separated by approximately one radar beam-

width (e.g., Brown et al. 1978; Brown 1998; Brown et al.

2002; Brown and Wood 2012). The velocities corre-

sponding to the maximum inbound and maximum out-

bound flow of the circulation can be used by NWS

forecasters to estimate the rotational velocity, which is

an indicator of circulation strength (Brown et al. 1978;

Mitchell et al. 1998). The rotational velocity is calcu-

lated as

V
rot

5
jMaximum InboundVelocityj1 jMaximumOutboundVelocityj

2
, (1)

and for Vrot to accurately measure the true strength of

the circulation, the radar-observed velocities must be a

faithful representation of the underlying velocity field.

For a given circulation, radar-observed velocities in a

TS or TVS are affected by the size and relative location

of the radar resolution volumes. In this work, we focus

on azimuthal sampling effects. In the azimuthal dimen-

sion, the physical size of the resolution volume (referred

to as the azimuthal resolution) is determined by theCorresponding author: Feng Nai, feng.nai@noaa.gov
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azimuthal beamwidth of the effective antenna radiation

pattern (referred to as the effective beamwidth) and the

range from the radar (Doviak and Zrnić 2006). The ef-

fective antenna radiation pattern is a function of the

inherent two-way antenna radiation pattern, the motion

of the antenna in the azimuthal direction, the number of

samples per dwell, and the data windowing used in signal

processing (Torres and Curtis 2007). The relative loca-

tion of the resolution volume in azimuth is determined

by the azimuthal sampling interval (i.e., the spacing

between consecutive radials or rays) and the location of

the circulation center with respect to the nearest point

on the sampling grid.

Radar-observed velocities from resolution volumes

that are physically smaller in the azimuthal dimension

are more likely to faithfully represent the underlying

velocity field. Improving the azimuthal resolution (i.e.,

reducing the effective beamwidth) can be achieved

through a combination of a narrower inherent antenna

radiation pattern, a slower antenna rotation rate, fewer

samples per dwell, or a more tapered data window. For

weather radars, narrowing the inherent two-way an-

tenna radiation pattern requires increasing the size

of the antenna, which is not practical. The antenna ro-

tation rate in the azimuthal direction can be slowed at

the price of increased volume update time. This is

undesirable, especially when observing rapidly evolving

phenomena like circulations. Two more practical

methods to reduce the effective beamwidth are 1) re-

ducing the number of samples per dwell and 2) using a

more tapered data window to weight these samples.

However, both of these methods reduce the effective

beamwidth at the price of increased variance of all

radar-variable estimates (Brown et al. 2002; Torres and

Curtis 2007). This trade-off between improved azi-

muthal resolution and increased variance of estimates

has been studied previously and is not the focus of

this paper.

Another way to improve the representation of the

underlying velocity fields of circulations is by changing

the location of the radar resolution volumes in azimuth

relative to the location of the circulation. The locations

of the resolution volumes are determined by the azi-

muthal sampling grid, where each grid point is the center

of a resolution volume in the azimuth direction. That

is, for data collected with a rotating antenna, the azi-

muth angles of the sampling grid points are used to

determine the time series dwells from which corre-

sponding radials of radar variables such as Doppler

velocity are obtained (Torres and Curtis 2007). In this

manner, dwells of time series data are formed by

collecting a given number samples with azimuths cen-

tered about each sampling grid point. It is important to

note that for the same effective beamwidth (i.e., the

same antenna rotation rate, number of samples per

dwell, and data window), we can use sampling grids with

different azimuthal sampling spacings. Thus, the azi-

muthal sampling interval and the effective beamwidth

can be controlled independently. In Brown et al. (2002),

the authors evaluated the impact of reducing the effec-

tive beamwidth of the radar from ;1.48 to ;18 while
simultaneously reducing the azimuthal sampling inter-

val from 18 to 0.58. The authors concluded that radar

variables generated with a 0.58 azimuthal sampling in-

terval and a ;18 effective beamwidth can lead to im-

proved resolution and detection range of both TS and

TVS. Additionally, the authors found that reducing

the azimuthal sampling interval to less than 0.58 while
also reducing the effective beamwidth to less than 18 did
not lead to significant improvements when detecting

TS and TVS. These conclusions were also confirmed

by later studies (e.g., Brown et al. 2005; Proud et al.

2009). However, these studies did not investigate the

impact of reducing the azimuthal sampling interval

while holding the effective beamwidth constant. This

will be the focus of this paper.

As mentioned before, the position of the sampling

grid with respect to the circulation also affects the ac-

curacy of its measured strength (e.g., Wood and Brown

1997; Brown et al. 2002; Melnikov et al. 2015). Hereafter,

the position of the sampling grid with respect to the

circulation will be referred to as the sampling-grid rel-

ative position. The number of possible sampling-grid

relative positions is given by the azimuthal sampling

interval divided by the azimuth difference between

consecutive transmitted pulses, which is a function of the

antenna rotation rate and the pulse repetition time

(PRT). That is, dwells can be ‘‘shifted’’ no less than one

sample at a time. In Wood and Brown (1997), different

sampling-grid relative positions for a 18 azimuthal sam-

pling interval were simulated to study the impact on

the observed strength of mesocyclones and tornados.

Their study showed that sampling-grid positions that

contain radials coinciding with the edge of a circulation

generated higher Vrot compared to sampling-grid posi-

tions where radials are offset from the edge of the cir-

culation. This implies that short-term variations in

observed circulation strength should not be attributed

exclusively to storm evolution since they could also be

the result of changes in the relative position of the

sampling grid.While it is possible to adjust the sampling-

grid positions, it is impossible to determine a priori

which sampling-grid position will provide the highest

Vrot for a given circulation. Because of this, authors of

later studies treated the sampling-grid relative position

as a random variable in their simulations to account for
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all possible scenarios (e.g., Brown et al. 2002; Torres

and Curtis 2015).

To mitigate the impact of sampling-grid relative po-

sition, Melnikov et al. (2015) proposed to form every

possible M-sample dwell by reusing the last M 2 1

samples from the previous dwell and adding exactly one

new sample. This approach reduces the azimuthal sam-

pling interval to the smallest possible value (i.e., the

azimuth difference between consecutive transmitted

pulses) and thus minimizes the effects of sampling-grid

relative positions. While the authors showed the po-

tential of mitigating the impact of sampling-grid rel-

ative position by reducing the azimuthal sampling

interval, their analysis of the improvement from the

fine azimuthal sampling was done using a single case

with qualitative comparisons of fields of radar vari-

ables. Furthermore, even if optimum, their approach

would not be practical for most operational radars due

to the larger number of dwells (by at least an order of

magnitude) that would need to be processed and

distributed.

In this work, we quantify the impacts of reducing the

azimuthal sampling interval on the radar-observed

strength of circulations. Unlike previous studies, we

systematically vary the azimuthal sampling interval

while keeping the azimuthal resolution and the variance

of radar-variable estimates constant. Our results can

be used to inform the selection of an appropriate azi-

muthal sampling interval that balances the accuracy of

the radar-observed circulation and the computational

complexity. The rest of the paper is organized as follows.

Section 2 describes the simulation methodology and

results, section 3 presents two tornado cases observed

with different sampling grids, and section 4 concludes

with a summary of our findings.

2. Simulations

Simulations were used in previous works to study the

impact of the azimuthal resolution (Brown et al. 2002;

Proud et al. 2009), the azimuthal sampling interval

(Wood and Brown 1997; Brown et al. 2002), and range-

oversampling processing (Torres and Curtis 2015) on

estimates of Vrot from radar-observed circulations.

Simulations are also advantageous for our study because

they provide access to the underlying velocity field. This

allows us to quantify the performance of a given sam-

pling grid by comparing the associated radar-observed

Vrot with the maximumVrot that can be observed among

all sampling grids. Moreover, simulations allow the

systematic varying of circulation parameters (i.e., core

radius, peak tangential velocity, and range) so that the

effects of azimuthal sampling for different circulations

can be quantified. Our simulation methodology and

results are discussed next.

a. Simulation methodology

One approach to simulate radar observations of cir-

culations is to use physically based simulators (e.g.,

Capsoni and D’Amico 1998; Cheong et al. 2017). These

are realistic but highly complex; thus, they are not

practical for this study. While not as realistic as their

physically based counterparts, simulations based on

idealized circulation models have proven to be sufficient

to study radar-sampling effects (e.g., Brown et al. 2002;

Proud et al. 2009; Wood and Brown 2011; Brown and

Wood 2012).

In our simulations, we use the Rankine (1901) com-

bined vortex model to generate the model velocity

profile that passes through the center of the circulation

at a constant range. This model has the form

V(u)5V
x
(R tanu/R

x
)n (2)

for a circulation at range R and centered at 08 azimuth,

where V is the radial velocity at range R and azimuth u,

Vx is the maximum tangential velocity at core radius Rx,

n 5 1 for R tanu # Rx, and n 5 20.6 for R tanu . Rx.

Figure 1 shows an example of the model velocity profile

(blue dashed line) as a function of azimuth where Vx is

100ms21, Rx is 400m, and the range to the center of the

circulation is 80 km. We tested other model velocity

FIG. 1. Model (blue dashed line) and radar-observed (blue solid

line) velocities (before sampling) as a function of azimuth for a

circulation at a range of 80 km with 100m s21 peak tangential ve-

locity and 400-m core radius. The radar has a 18 effective beam-

width, which results in a physical beamwidth (PB) of;1396m at a

range of 80 km. The extrema of the radar-observed velocities (red

markers) are used to compute a Vrot of 60.9m s21, and their loca-

tions (vertical red dashed lines) are used to determine an apparent

diameter (AD) of ;1592m. The BADR for this circulation

is 0.877.
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profiles as discussed in Wood and Brown (2011), and

their results were similar to results from the Rankine

model. However, the improvement to Vrot that can be

gained via reducing the azimuthal sampling interval was

smallest for the Rankine model, which means that the

improvements shown in this study are conservative. We

made three assumptions on the circulation model: 1) it

has constant velocity in range, 2) it has constant velocity

in elevation, and 3) it has uniform reflectivity every-

where. While somewhat unrealistic, these assumptions

allow us to use simpler simulations. We analyzed the

impact of the first assumption in the appendix and found

that our conclusions from the simpler model do not

change when a circulation model with more realistic

variations in range is used. The assumption of constant

velocity in elevation wasmade in numerous studies (e.g.,

Zrnić and Doviak 1975; Wood and Brown 1997, 2000,

2011; Wood et al. 2001; Brown et al. 2002; Proud et al.

2009; Brown and Wood 2012, 2015; Torres and Curtis

2015) and is supported by numerical simulation results

(Wood et al. 2009). Many of the same studies also as-

sume uniform reflectivity.

To calculate the radar-observed velocity profile be-

fore sampling, a one-dimensional effective antenna ra-

diation pattern is convolved with the model velocity

profile. The effective antenna radiation pattern is as-

sumed to have a Gaussian-shaped main lobe. Similar to

previous studies, the sidelobes of the effective antenna

radiation pattern are neglected since they are typi-

cally tens of dBs below the main lobe peak. In this study,

we kept a constant effective beamwidth of 18 because
it approximates that of the WSR-88D when collecting

superresolution data (Torres and Curtis 2007). The

radar-observed velocity profile before sampling is shown

in Fig. 1 with a solid blue line. Note that the maximum

(red dot) and minimum (red diamond) of the radar-

observed velocity profile have the same magnitude due

to the symmetry of both the model and the effective

antenna radiation pattern. This magnitude is defined

as themaximumobservable rotational velocity (denoted

as Vrot* ); that is, it is the maximum Vrot that can be ob-

served by the radar for this circulation among all sam-

pling grids when using a 18 effective beamwidth. Note

that Vrot* is less than Vx due to the ‘‘smoothing effect’’ of

the effective antenna radiation pattern on the model

velocity profile. In this case, Vrot* is 60.9m s21 (recall that

Vx is 100ms21). In our simulations, estimation noise is

not added to the radar-observed velocities because its

effects would be the same for all sampling grids, and we

are only interested in assessing relative performance

across all sampling grids.

In practice, simulations should take into account all

possible combinations of circulation radii and distances

from the radar. However, it is possible to reduce the

number of circulations that need to be simulated by

grouping circulations into families such that, for each

member of a family, the impact of azimuthal sampling

on the radar-observed strength of circulation is the

same. One method to group the circulations into fami-

lies is to use their beamwidth-to-apparent-diameter

ratio (BADR), where the apparent diameter (AD) is

defined as the distance between the extrema of the

radar-observed velocity profile before sampling. In the

example shown in Fig. 1, the physical size of the radar

resolution volume in the azimuth dimension [herein

referred to as the physical beamwidth (PB)] at a range

of 80 km can be computed to be ;1396m, and the AD

is ;1592m, which results in a BADR of 0.877. Since

the PB increases linearly as range increases, circulations

that are farther away from the radar must have a larger

AD to have the same BADR as circulations that are

closer to the radar. For example, circulation A located

at 160km with Vx 5 100m s21 and Rx 5 400m and cir-

culation B located at 20 km withVx5 50ms21 and Rx5
50m have the same BADR of 1. The left panel of Fig. 2

shows the radar-observed velocities (before sampling)

as a function of azimuth for these two circulations. Note

that the extrema (indicated by the dot and diamond

markers) of the radar-observed velocity profiles for

these two circulations are located at the same azimuths,

confirming that the two circulations have the same

BADR. The radar-observed velocities before sampling

can be expressed as a fraction ofVrot* . This normalization

removes the dependency onVx and allows us to quantify

the impact of azimuthal sampling for all cases with the

same BADR using a single simulation. The normalized

radar-observed velocity profiles for circulations A and

B are shown in the right panel of Fig. 2. Since the two

normalized curves are identical, the effects of azimuthal

sampling for these two circulations are also identical.

This implies that results for one circulation with a par-

ticular BADR can be generalized to other circulations

with the same BADR. In practice, the variance of the

velocity estimates for circulations at different ranges

could be different because they have different signal-to-

noise ratios. However, these differences in the variances

of the velocity estimates do not impact our conclusions

because they are independent of the sampling grid used

and do not affect relative comparisons between different

sampling grids.

To evaluate the effects of azimuthal sampling on Vrot,

we simulated four azimuthal sampling intervals: 1.08,
0.58, 0.258, and 0.1258. For the same relative position,

the grids are aligned such that a coarser sampling grid

(i.e., one with a larger azimuthal sampling interval) is a

subset of a denser one (i.e., one with a smaller azimuthal
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sampling interval). That is, a denser sampling grid re-

tains all velocity samples from a coarser sampling grid

and provides additional velocity samples at the new grid

points. This implies that, compared to a coarser sam-

pling grid, Vrot values for a denser sampling grid are

always the same or closer to Vrot* . For each circulation,

the boundaries of the sampling grid are defined to en-

sure that the extrema of the radar-observed velocity

profile are well within the sampling grid. Without loss

of generality, we place the circulation center at 08 azi-
muth, and initially place the sampling grids such that

the center grid point coincides with the center of the

circulation. This position of the sampling grid relative to

the center of the circulation is referred to as 08 sampling-

grid relative position. In general, the sampling-grid

relative position is defined as the minimum distance

between the center of the circulation (i.e., 08 in our case)

and the closest sampling-grid point. To study the effects

of different sampling-grid relative positions, the grids

are shifted by an azimuth offset varying from 20.58 to
0.58 in 0.0058 increments. These offsets span the full

range of relative positions for the coarsest sampling grid

with a 1.08 azimuthal sampling interval but result in

multiple instances of the same sampling-grid relative

position for the denser sampling grids (e.g., for a sam-

pling grid with a 0.258 azimuthal sampling interval, azi-

muth offsets of 08, 60.258, and 60.58 result in the same

sampling-grid relative position of 08). In other words,

the sampling-grid relative position, and consequently

Vrot, are periodic functions of azimuth offset with period

given by the azimuthal sampling interval. However, we

apply the same azimuth offsets to all sampling grids

(i.e., covering more than one period for the denser

grids) to facilitate performance comparisons among

different grids.

b. Simulation results

Figure 3 shows an example for circulations with a

BADRof 0.833 corresponding to a circulation withRx5
400m at a range of 68.8 km. The normalized radar-

observed velocity profile (solid black line) and velocity

samples corresponding to sampling grids with 0.58 (top
panel) and 0.258 (bottom panel) azimuthal sampling

intervals are shown. When the sampling-grid relative

position is 08 (blue dots), reducing the azimuthal sam-

pling interval from 0.58 to 0.258 does not change Vrot.

Both sampling grids produce a normalized Vrot of 0.978.

However, when the sampling-grid relative position is

0.1258 (red diamonds), the grid with 0.258 azimuthal

sampling interval produces a normalized Vrot of 0.999

while the grid with a 0.58 azimuthal sampling interval

produces a normalized Vrot of 0.951. Note that for both

relative positions, the grid with a 0.258 azimuthal sam-

pling interval produces normalized values of Vrot that

are the same or higher than those produced by a grid

with a 0.58 azimuthal sampling interval, as expected.

This example shows that a change in the relative posi-

tion of the sampling grid may result in a higher nor-

malized Vrot for a denser grid and a lower normalized

Vrot for a coarser grid.

For each BADR, there is a relationship between the

relative position of the sampling grid and the normalized

FIG. 2. (left) Radar-observed velocities (before sampling) for circulationA (blue line) andB (red dashed line) for

the one-dimensional circulationmodel. CirculationA is located at 160 kmwithVx5 100m s21 andRx5 400m, and

circulationB is located at 20 kmwithVx5 50m s21 andRx5 50m.Both circulations have the sameBADRof 1, and

(right) their normalized radar-observed velocities are identical.
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Vrot; Fig. 4 shows an example of such a relationship for

circulations with a BADR of 0.654 corresponding to

a circulation with Rx 5 100m at a range of 5.2 km.

The normalized Vrot for grids with 1.08 (black line), 0.58
(blue line), 0.258 (red line), and 0.1258 (green line)

azimuthal sampling intervals are plotted for different

azimuth offsets. As described before, the curves are

periodic with period given by the azimuthal sampling

interval. Figure 4 also clearly shows that, for a given

relative position, reducing the azimuthal sampling in-

terval results in the same or higher normalized Vrot. The

amount of improvement is largest when the azimuthal

sampling interval is reduced from 1.08 to 0.58, and it gets

progressively smaller as the azimuthal sampling interval

is further reduced.

In practice, we do not know the sampling-grid relative

position; therefore, it makes sense to measure the per-

formance of different sampling grids independent of

azimuth offset. For this purpose, we characterize the

performance of each sampling grid for a given BADR

using the best and worst Vrot among all possible relative

positions (i.e., the maxima and the minima of curves like

the ones in Fig. 4). Better performing sampling grids are

those for which the worst-case Vrot is closer to Vrot* thus

reducing underestimation of radar-observed Vrot. From

Fig. 4, it is clear that reducing the azimuthal sampling

interval can improve the worst-case Vrot (i.e., the min-

ima of each curve increase as the azimuthal sampling

interval decreases). Also, the difference between the

best and worst Vrot decreases for the smaller azimuthal

sampling intervals, which means that the sampling-grid

FIG. 4. Normalized Vrot as a function of sampling-grid azimuth

offset for circulations with a BADR of 0.654. The different curves

correspond to sampling grids with azimuthal sampling intervals of

1.08 (black), 0.58 (blue), 0.258 (red), and 0.1258 (green).

FIG. 3. Normalized radar-observed velocities before sampling (solid black lines) and velocity

samples for grids with (top) 0.58 and (bottom) 0.258 azimuthal sampling intervals for a circu-

lation with a BADR of 0.833. Velocity samples for 08 (blue dots) and 0.1258 (red diamonds)

relative positions are shown for both azimuthal sampling intervals.
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relative position has less impact on measuring Vrot. In

turn, this should help to improve the interpretation of

radar data because any short-term variations in ob-

served circulation strength can be mostly attributed to

storm evolution and not to radar sampling.

The example shown in Fig. 4 demonstrates the ad-

vantages of reducing the azimuthal sampling interval

for a single BADR. To generalize our results, we

conducted a similar analysis for BADRs varying from

0.1 to 1.06. This interval covers a range including large

circulations close to the radar (e.g., Rx 5 400m and

range of 4.6 km) to small circulations far from the radar

(e.g., Rx 5 50m and range of 114.6 km). Alternatively,

for a circulation with Rx 5 50m, the BADR interval

covers radar ranges varying from 0.6 to 114.6 km.

Figure 5 shows the best Vrot (solid lines) and worst Vrot

(dashed lines) for different azimuthal sampling inter-

vals as a function of BADR. It can be seen from this

figure that the best Vrot (solid line) equals Vrot* only for a

few combinations of azimuthal sampling interval and

BADR. In all other cases, even the best Vrot is under-

estimated regardless of the sampling-grid relative posi-

tion. However, for all BADRs, the best and worst Vrot

get closer to Vrot* as the azimuthal sampling interval

is reduced. For grids with azimuthal sampling inter-

vals of 1.08, 0.58, 0.258, and 0.1258, the best normalized

Vrot values are greater than or equal to 0.917, 0.971,

0.991, and 0.997, respectively, and the worst normalized

Vrot values are greater than or equal to 0.699, 0.854,

0.956, and 0.990, respectively. This confirms that, for

all BADRs, the underestimation of radar-observed Vrot

is reduced for the finer sampling grids.

Figure 5 also shows that, for all BADRs, the differ-

ences between the best and worst Vrot for each sampling

grid are also reduced when the azimuthal sampling in-

terval is reduced. Among the simulated BADRs, the

maximum difference between the best and worst nor-

malized Vrot for grids with azimuthal sampling intervals

of 1.08, 0.58, 0.258, and 0.1258 are 0.298, 0.143, 0.044, and
0.010, respectively. This confirms that reducing the azi-

muthal sampling interval results in more consistent

radar-observed Vrot values that are independent of

sampling-grid relative positions for all BADRs. Thus,

for all circulations, the impact of sampling-grid relative

position is reduced when using denser sampling grids.

However, the improvements get progressively smaller

as the azimuthal sampling interval decreases. That is,

reducing the azimuthal sampling interval from 1.08 to
0.58 has the largest improvement while reducing the

azimuthal sampling interval from 0.258 to 0.1258 has the
smallest improvement. Thus, it is not necessary to use

the densest sampling grid as proposed byMelnikov et al.

(2015) since the majority of the benefits are realized for

azimuthal sampling intervals on the order of 0.1258.
Note that for the sampling grids in our simulations,

the computational complexity is doubled as the azi-

muthal sampling interval is halved (i.e., estimates

must be produced for twice the number of sampling

grid points). In practice, any increase in computational

complexity must be considered when choosing the ap-

propriate sampling grid.

3. Real data

In this section, we corroborate our simulation results

using real data. To mimic our simulation experiments,

we processed time series (I/Q) data for two cases to

produce velocity fields corresponding to different sam-

pling grids using the process described in Torres and

Curtis (2007). For each sampling grid, we measured the

radar-observed Vrot and produced a plot similar to

Fig. 4. These data were collected using constant eleva-

tion scans where each transmit pulse corresponds to a

different azimuth angle, and the azimuth difference

between consecutive pulses is given by the product of

the antenna rotation rate and the PRT. To generate

velocity fields, dwells were formed by taking the returns

from the same number of transmit pulses (M) centered

in azimuth about each sampling grid point. This process

is illustrated in Fig. 6 for M 5 20 and 3 sampling grids.

In this figure, each box on the top axis (labeled as pulses)

represents the received I/Q data for all range cells cor-

responding to a single transmitted pulse. Grids A and

B have a 1.08 azimuthal sampling interval while grid C

has a 0.58 azimuthal sampling interval. The grid points

FIG. 5. The best (solid lines) and worst (dashed lines) Vrot for

each sampling grid among all possible relative positions for dif-

ferent BADRs. The different curves correspond to sampling grids

with azimuthal sampling intervals of 1.08 (black), 0.58 (blue), 0.258
(red), and 0.1258 (green).
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are indicated by the colored dots, and the I/Q data used

to form the corresponding dwells are indicated by the

line segments with matching colors. Note that because

M is kept constant for all sampling grids, adjacent dwells

are increasingly overlapped as the sampling grid gets

finer (e.g., cf. grid A to grid C in Fig. 6). All dwells were

processed using the same data window to maintain a

constant effective beamwidth of ;1.08 (and constant

azimuthal resolution); this also ensures that the stan-

dard deviation of velocity estimates is consistent across

different sampling grids. Velocities for each range cell

were estimated using the conventional pulse-pair esti-

mator and were manually dealiased and converted to

storm-relative velocity to facilitate the measurement

of Vrot. The dealiasing process consists of three basic

steps. First, we identified the general area of the circu-

lation by examining the reflectivity and velocity fields.

Next, within this general area, we determined the ap-

proximate center of the circulation by looking for the

largest azimuthal shear at constant range, which can

span two or three range cells depending on the BADR

and the sampling grid. Finally, the velocities of neigh-

boring range cells were dealiased using knowledge of

the expected wind direction (inbound or outbound)

from nonaliased velocities in range gates farther away

from the center of the circulation. To introduce the ef-

fects of different sampling-grid relative positions, this

process was repeated as each sampling grid was pro-

gressively shifted in azimuth from 20.58 to 0.58 in 0.028
increments. In the examples shown in Fig. 6, grid A has a

08 azimuth shift, grid B has a 0.58 azimuth shift, and grid

C has a 08 azimuth shift (as explained in the previous

section, this shift is equivalent to a20.58 or 0.58 azimuth

shift for this azimuthal sampling interval).

The first case we used to corroborate our simulation

results is a circulation observed by the KCRI radar

located in Norman, Oklahoma, at 2204 UTC 19 May

2013. At the time of observation, the circulation was

located at 31.58 in azimuth and 67.6 km in range. Figure 7

shows the storm-relative velocity (SRM) fields of the

circulation at 0.58 elevation corresponding to grids with

08 azimuth shift and azimuthal sampling intervals of 1.08
(top-left panel), 0.58 (top-right panel), 0.258 (bottom-left

panel), and 0.1258 (bottom-right panel). The location

and magnitude of the maximum inbound and outbound

velocities used to calculate Vrot are indicated by the

arrows in each panel. The grid with a 1.08 azimuthal

sampling interval produced the lowestVrot of 27.0m s21,

while the grids with 0.58, 0.258, and 0.1258 azimuthal

sampling intervals produced higher values of Vrot of

44.45, 50.25, and 50.25ms21, respectively. Note that,

in this case, reducing the azimuthal sampling interval

from 0.258 to 0.1258 does not result in higher Vrot. This

example corroborates our simulation findings: reducing

the azimuthal sampling interval can result in the same or

higher Vrot, and the improvements get progressively

smaller as the azimuthal sampling interval decreases.

Figure 8 shows the SRM fields at 0.58 elevation for

sampling grids shifted by 08 (left column), 0.168 (center
column), and 0.288 (right column), and Table 1 contains

the values ofVrot for each case. As expected, the relative

position of the grid affects Vrot (i.e., the values of Vrot

vary within each row of Table 1). However, the vari-

ability reduces as the azimuthal sampling interval gets

smaller (i.e., the values ofVrot within each row of Table 1

are more consistent as we move from top to bottom).

Moreover, for each azimuth shift, denser grids resulted

in the same or higher Vrot when compared to coarser

grids (i.e., Vrot is the same or increases as we go down

each column of Table 1). These results also corroborate

our observations from Fig. 4.

Figure 9 summarizes the results for all sampling grids

applied to this case. Similar to what is presented in Fig. 4

using simulations, Vrot was computed from velocity

fields obtained from the real data and plotted as a

function of azimuth shift for grids with different azi-

muthal sampling intervals. Whereas the manual deal-

iasing process used so far is quite realistic, it may not be

perfect, especially for large BADRs. That is, for weaker

or more distant circulations, identifying the approxi-

mate location of the center of the circulation can be

challenging, and this could lead to velocity dealiasing

errors. In turn, any dealiasing errors could result in un-

derestimation of Vrot, especially for the coarser grids.

When comparing the real-data results with those in

Fig. 4, it is important to reduce dealiasing errors because

the simulations did not have any aliasing effects. To

reduce dealiasing errors for this analysis, we used the

velocity field corresponding to the grid with a 0.1258

FIG. 6. Illustration of how dwells are formed for different sam-

pling grids. The received I/Q data for all range cells corresponding

to a single transmitted pulse are represented by the boxes in the top

axis. The grid points are indicated by the colored dots, and the

group of pulses used to form the dwell corresponding to a grid point

is indicated by the line segment with matching color.
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azimuthal sampling interval with the same azimuth

shift to inform the dealiasing of coarser-grid velocity

fields. Because we based the dealiasing of the velocity

fields corresponding to the coarser grids on the ve-

locity fields corresponding to the grid with a 0.1258
azimuthal sampling interval, dealiasing decisions are

consistent across the different sampling grids. Thus,

relative comparisons of the different grids are not af-

fected by dealiasing errors. Note, however, that this

process is not realistic because, in practice, velocity

fields on multiple sampling grids would not be available.

As a consequence of reducing velocity dealiasing errors,

the values ofVrot for grids with a 1.08 azimuthal sampling

interval are now higher than those listed in Table 1 and

are better than what could be achieved if only the 1.08

azimuthal sampling interval data were used for deal-

iasing. The curves in Fig. 9 broadly agree with the

simulation results in Fig. 4. That is, reducing the azi-

muthal sampling interval results in the same or higher

Vrot for the same sampling-grid relative position and in

improved consistency when considering all relative

positions.

While there is broad agreement between the results

from simulations and real data, there are also some

noticeable differences. One obvious difference is that

the real-data curves shown in Fig. 9 are not symmetrical

about 08 azimuth shift because this shift does not cor-

respond to 08 relative position as was the case with the

simulations. Additionally, the curves are not symmetri-

cal about their maxima; this could be caused by errors in

FIG. 7. Storm-relative velocity (SRM) fields at 0.58 elevation for a circulation located at 31.58 azimuth and 67.6-

km range observed by the KCRI radar at 2204 UTC 19 May 2013. The same time series data were processed to

generate fields corresponding to four sampling grids with 08 azimuth shift and azimuthal sampling intervals of (top

left) 1.08, (top right) 0.58, (bottom left) 0.258, and (bottom right) 0.1258. The location and magnitude of the max-

imum inbound and outbound velocities used to calculate Vrot are shown by the arrows.
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FIG. 8. As in Fig. 7, but for sampling grids shifted by (left) 08, (center) 0.168, and (right) 0.288. The left column repeats the same fields from

Fig. 7 for comparison. The values of Vrot for each case are listed in Table 1.
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the estimated storm motion or asymmetry in the circu-

lation itself. Also note that, in the real data, improve-

ment from coarser to denser grids does not follow the

same pattern. While the best Vrot values for sampling

grids with 0.58, 0.258, and 0.1258 azimuthal sampling in-

tervals are about the same, the worst Vrot values do not

improve at the same pace as seen with simulations. For

example, the minima of the red curve are closer to the

minima of the blue curve whereas simulations showed

the opposite (i.e., the minima of the red curve were

closer to the minima of the green curve). This discrep-

ancy could be caused by statistical errors of velocity

estimates. Nevertheless, none of these differences ob-

served in the real-data results change the main con-

clusion derived from simulation results: reducing the

azimuthal sampling interval improves the accuracy of

radar-observed circulation strength.

The second case we used to corroborate our simu-

lation results is a circulation observed by the KOUN

radar located in Norman at 2105 UTC 9 May 2016. At

the time of observation, the circulation was located at

1718 azimuth and 75-km range. The same analyses as in

the previous case were performed for this case, and the

results are shown in Fig. 10. Compared to the previous

case, the circulation in this case has a larger BADR since

it is a weaker circulation located farther away from the

radar. Because of this, identifying the approximate cir-

culation center to perform accurate velocity dealiasing

and then compute Vrot is more challenging. Despite the

curves exhibiting noisier behavior compared to those

in Fig. 9, grids with smaller azimuthal sampling interval

still result in the same or higher Vrot for a given relative

position and in improved consistency when considering

all relative positions.

4. Conclusions

In this work, we quantified the impact of reducing

the azimuthal sampling interval on the radar-observed

strength of circulations. Unlike previous studies, we

systematically varied the azimuthal sampling interval

while keeping the azimuthal resolution and the variance

of radar-variable estimates constant. Using simplified

simulations, we showed that decreasing the azimuthal

sampling interval leads to a reduction in the underesti-

mation of Vrot for all BADRs. Our simulations showed

that, for all BADRs, grids with a 0.1258 (0.258) azimuthal

sampling interval result in radar-observed circulation

strengths that are within 99% (95%) of their theoretical

maxima. Moreover, decreasing the azimuthal sampling

interval also reduces the impacts of azimuthal sam-

pling for all BADRs. That is, the difference between the

best and the worst radar-observed circulation strengths

among all sampling-grid relative positions decreases as

the azimuthal sampling interval gets smaller.

To corroborate our simulation results, we processed

time series data for two circulations and produced

FIG. 10. As in Fig. 9, but for the circulation observed at 2105 UTC

9 May 2016.

FIG. 9. Vrot as a function of azimuth shift for different sampling

grids for the circulation observed at 2204 UTC 19 May 2013. The

different curves correspond to sampling grids with azimuthal

sampling intervals of 1.08 (black), 0.58 (blue), 0.258 (red), and

0.1258 (green).

TABLE 1. Computed Vrot for each case in Fig. 8.

Azimuthal sampling

interval (8)

Vrot (m s21)

08 shift 0.168 shift 0.288 shift

1.0 27.0 27.0 41.7

0.5 44.45 46.95 51.2

0.25 50.25 46.95 51.2

0.125 50.25 51.7 51.2
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velocity fields corresponding to different sampling grids.

The variation of Vrot as a function of azimuth shift for

different sampling grids showed the same features as

the simulation results. That is, higher and more consis-

tent radar-observed circulation strengths were mea-

sured when using sampling grids with smaller azimuthal

sampling interval. Results from simulations and real

data also showed that the improvements get pro-

gressively smaller as the azimuthal sampling interval

decreases, which implies that the majority of the

benefits can be realized without using the finest possible

sampling grid.

From a practical standpoint, it is important to note

that there is a cost associated with using sampling grids

with smaller azimuthal sampling intervals. Namely,

the use of denser sampling grids leads to more radar

data being produced, stored, and transmitted. For ex-

ample, reducing the azimuthal sampling interval from

0.58 to 0.1258 would quadruple the amount of data.

Furthermore, if the volume update times were to remain

constant, using denser sampling grids would increase

required computational capacity (i.e., the number of

computations per second) and transmission bandwidth.

These tradeoffs must be taken into account in an oper-

ational context, and different ways to address them

should be investigated. Solutions will depend on specific

hardware and software constraints and end-user needs.
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APPENDIX

On the Generality of Using a 1D
Circulation Model

In this appendix, we test the robustness of our con-

clusions with respect to the simplifying assumption that

the circulation model has constant velocity in range

given by Eq. (1). This simple model is herein referred

to as the 1D circulation model. To show that using a

circulation model with more realistic variations in range

leads to the same conclusions as using the 1D model,

we need to understand the impact of including range

effects on the performance of different sampling grids.

To do this, we generated a model velocity profile (re-

ferred to as the 2D circulation model) that includes

range effects by convolving the circulation model used

by Torres and Curtis (2015) with a realistic range

weighting function (RWF).We used theRWFmeasured

on the KOUN radar: for the 1.57-ms pulse width, it has

a 3-dB width of ;250m.

Before looking at the change in performance for dif-

ferent sampling grids when using the more realistic

2D circulation model, we begin by illustrating the ef-

fects using two circulations with different core diame-

ters. The left panel of Fig. A1 shows the radar-observed

velocities (before sampling) for circulation A (Rx 5
800m) at 88 km and circulation B (Rx 5 100m) at 20 km

using both the 1D and 2D models. For circulation

A (blue and green curves in Fig. A1), the inclusion of

range effects results in the same BADR of 0.898 and

nearly identical normalized radar-observed veloci-

ties (see right panel of Fig. A1). Conversely, the radar-

observed velocities for circulation B using the two

circulation models are different (cf. the magenta and

red curves in the left panel of Fig. A1). Specifically,

the BADR changes from 0.99 using the 1D model to

0.898 using the 2D model. Moreover, using the 2D

model, the normalized radar-observed velocities (before

sampling) for circulations A and B are appreciably dif-

ferent despite having the same BADR (cf. the red and

green curves in the right panel of Fig. A1). In summary,

when range effects are included, 1) the performance of

different sampling grids does not change for circulation

A, and 2) despite having the same BADR, there is a

small variability in the performance of different sam-

pling grids for circulations A and B. Thus, to generalize

our conclusions from Fig. 5, we need to show that our

observations based on these examples hold for all

BADRs. That is, we need to show that, 1) regardless of

the circulation model, the performance of different

sampling grids does not change for large circulations,

and 2) the performance variability within each BADR

family is small enough to not impact our conclusions.

To show that the performance of different sampling

grids does not change for large circulations regardless

of the circulation model, we compared the perfor-

mance of different sampling grids using the 1D and 2D

circulation models as the range of circulation A varied

from 2.5 to 200km. Fig. A2 shows the maximum abso-

lute differences in normalized Vrot among all sampling-

grid relative positions when using the two circulation

models for all BADRs. The largest maximum absolute

differences are 0.0085, 0.004, 0.0015, and 0.0007 for grids

1114 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/6/1103/4961219/jtechd190152.pdf by N
O

AA C
entral Library user on 11 August 2020



with 1.08, 0.58, 0.258, and 0.1258 azimuthal sampling in-

tervals, respectively. These differences are negligible

shifts to the curves in Fig. 5 and demonstrate that the

performance of different sampling grids is nearly iden-

tical at all BADRs for circulation A regardless of the

circulation model used. Thus, the results in Fig. 5 im-

mediately generalize to circulations with relative size

greater than or equal to that of circulation A, where

relative size is defined as the ratio of the circulation di-

ameter to the 3-dB width of the RWF.

To quantify the performance variability within each

BADR family, we computed the maximum absolute

differences in normalized Vrot between circulations A

andBwhen using the 2D circulationmodel. Circulations

A and B were chosen because they represent extreme

relative sizes where the 2Dmodel is most likely to cause

significant differences in their normalizedVrot. Thus, the

performance difference between these two circulations

provides the upper bound on the performance variabil-

ity within a BADR family. The BADRs for this analysis

were chosen to represent a wide range of realistic sce-

narios. For example, for a BADR of 0.386, circulation A

is located at 20 km and circulation B at 2.91 km, and,

for a BADR of 1.016, circulation A is located at 200km

and circulation B at 62.5 km. As shown in Fig. A3, the

maximum absolute differences are the largest for grids

with a 1.08 azimuthal sampling interval (black curve)

with a maximum difference of 0.074 (or 7.4% of

Vrot* ). For grids with azimuthal sampling intervals of

0.58 (blue curve), 0.258 (green curve), and 0.1258 (red
curve), the maximum differences are no larger than

0.023 (or 2.3% of Vrot* ), 0.0054 (or 0.54% Vrot* ), and

0.0016 (or 0.16% Vrot* ), respectively. These upper bounds

on the performance variability are smaller than the

performance differences between the grids shown in

Fig. 5 (recall that differences in performance are quan-

tified by the separation between the dashed lines for a

given BADR). This is especially true for large BADRs

for which a reduction in the azimuthal sampling interval

provides the most benefits.

Based on these results, we show that, 1) regardless of

the circulation model, the performance of different

sampling grids does not change for large circulations,

and 2) the performance variability within each BADR

FIG. A1. (left) Radar-observed velocities (before sampling) for circulation A at 88 km and circulation B at 20 km

using the 1D (blue and magenta curves) and 2D (green and red curves) circulation models. (right) The normalized

radar-observed velocities are nearly identical for the circulations with the same BADR regardless of the model used.

FIG. A2. Maximum absolute differences in normalized Vrot be-

tween the 1D and 2D circulation models among all sampling-grid

relative positions for circulation A. Different curves correspond to

grids with azimuthal sampling intervals of 18 (black), 0.58 (blue),
0.258 (red), and 0.1258 (green).
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family is small enough to not impact our conclusions.

Therefore, the use of a circulation model with more

realistic variations in range is not necessary since it

would lead to the same conclusions as when using the

simpler 1D model.
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0.58 (blue), 0.258 (red), and 0.1258 (green).
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